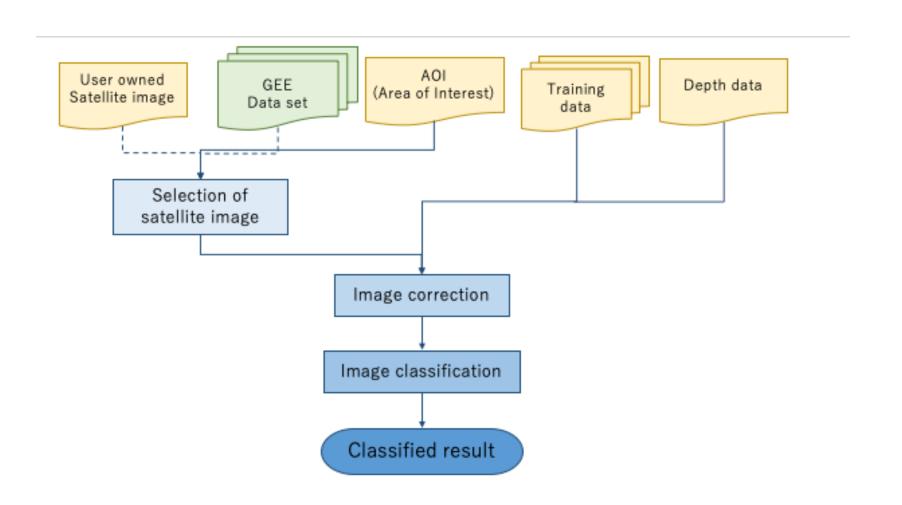
Hands on materials for mapping seagrass using Seagrass Mapper / Seagrass Trainer

Genki Terauchi

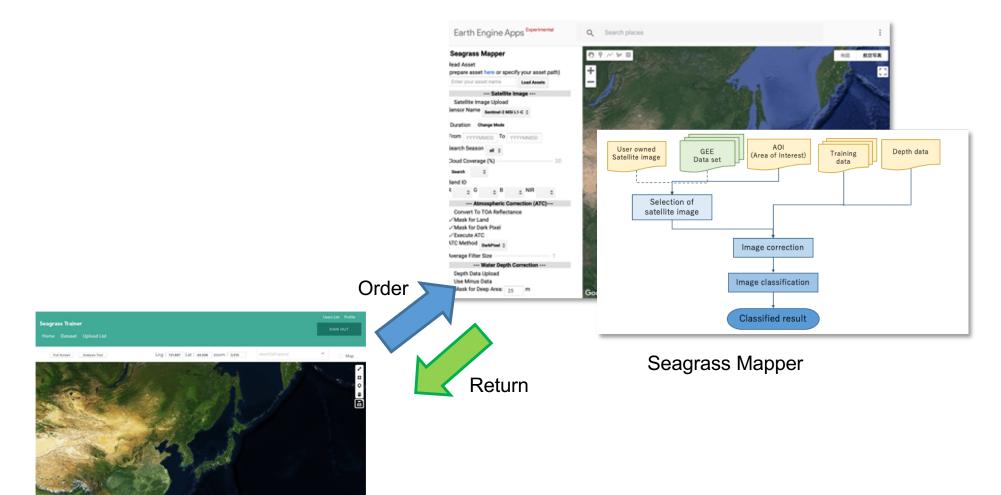
Northwest Pacific Region Environmental Cooperation Center / NOWPAP CEARAC

December, 2021

Hands on practice on Day 3

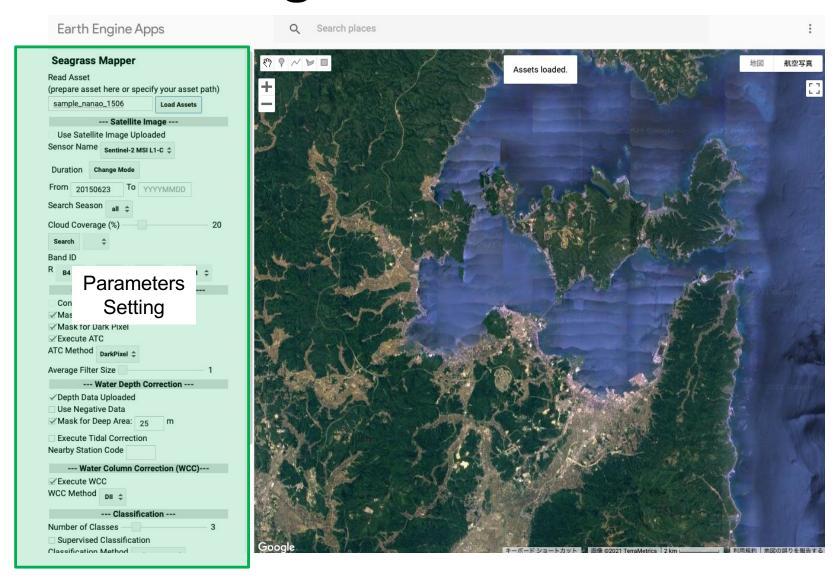

- 1. Load sample training data sets of June 2015 in Nanao Bay sample_nanao_1506
- 2. Run classification with Seagrass Mapper's User's manual page 18 to 23

https://mapseagrass.org/wordpress/wp-content/uploads/2021/05/Manual_SeagrassMapper_eng_ver1.pdf


3. Run classification with Seagrass Trainer's manual page 36 to 48

https://mapseagrass.org/wordpress/wp-content/uploads/2021/05/Manual_SeagrassMapper_eng_ver1.pdf

Procedure of satellite image analysis in Seagrass Mapper

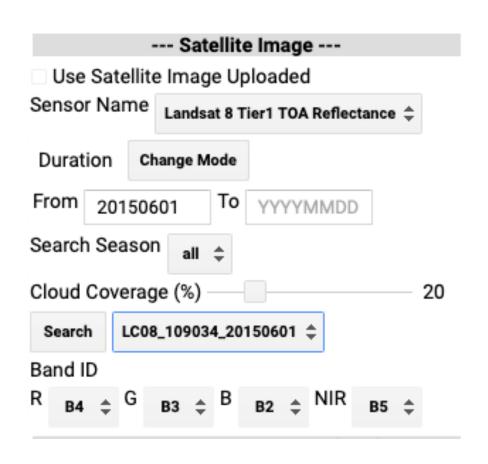


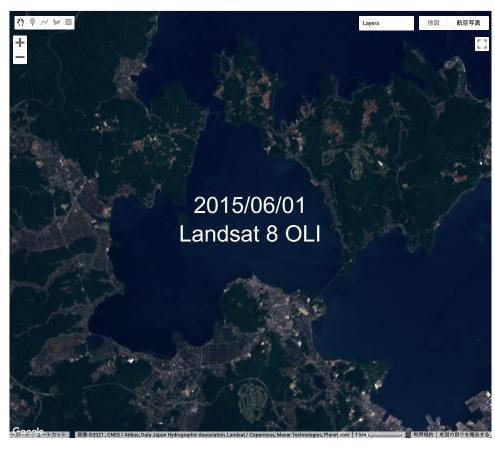
Procedure of satellite image analysis in Seagrass Trainer with Seagrass Mapper

Seagrass Trainer

Setting parameters for classifying satellite images

Reading asset in Seagrass Mapper


Seagrass Mapper


Read Asset (prepare asset here or specify your asset path)

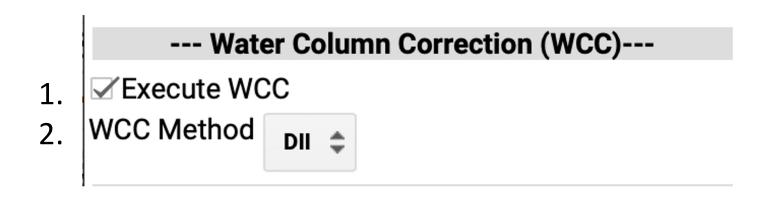
E sample_nanao_1506

Load Assets

Finding satellite images timely close to training data

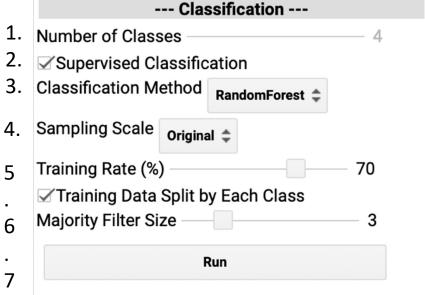
Setting atmospheric correction parameters

--- Atmospheric Correction (ATC)-- 1. Convert To TOA Reflectance 2. Mask for Land 3. Mask for Dark Pixel 4. Execute ATC 5. ATC Method DarkPixel \$ 6. Average Filter Size

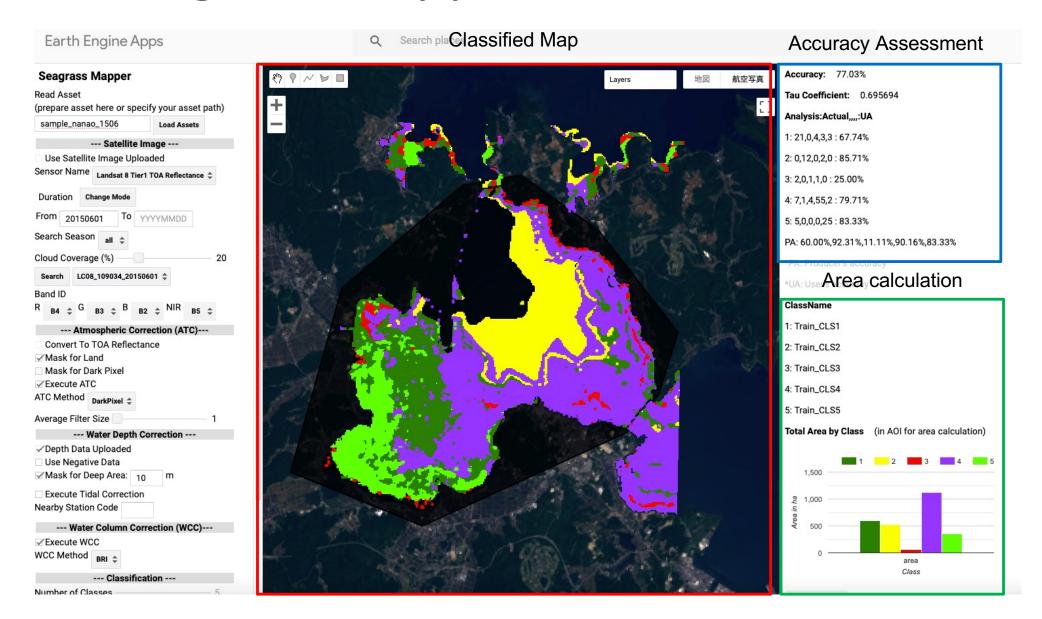

- 1. Tick if you want to convert your own prepared data to top of atmospheric data
- 2. Tick if you wan to mask land
- 3. Tick if you want mask dart pixels (recommend to test)
- 4. Tick if you want to apply atmospheric correction (ATC)
- 5. Choose ATC method from DarkPixel or NIRModel method (Usually DarkPixel method is recommended, but if image has some brighter spots it is recommend to use NIRModel method)
- 6. Choose average filter size in pixel for smoothing.

Setting water depth correction parameters

	Water Depth Correction							
 1. 2. 3. 	□ Depth Data Uploaded □ Use Negative Data □ Mask for Deep Area: m							
4.5.	Execute Tidal Correction Nearby Station Code							


- 1. Tick if you are using depth data uploaded
- 2. Use if your depth data include negative values
- 3. Specify depth for masking image
- 4. Tick if you are executing tidal correction
- 5. Specify station code for tidal correction (Choose from Japan Metrological Agency station code or specify your own prepared station name)

Setting water column correction parameters


- 1. Tick if you are executing water column correction (WCC)
- 2. Choose the WCC method from DII (depth invariant index) method or BRI (Bottom Reflectance Method)

Setting image classification parameters

- 1. Specify number of class from your prepared training data for supervised classification
- 2. Tick if you are using your training data for supervised classification
- 3. Choose classification method from Random Forest, Decision Tree, Support Vector Machines or MaxEnt matching your training data. In case no supervised classification is chosen, WekaKMeans method will automatically applied.
- 4. Set sampling scale for reading training data. Usually Original is recommended.
- 5. Set ratio to use training data for classification in percentage.
- 6. Tick if the same sampling rate is applied by each class
- 7. Set majority filter size for smoothing

Checking classified image on Seagrass Mapper

Accuracy assessment

Confusion matrix

	Class determ				
	Class	Seagrass	Sandy bottom	Seaweed	Total
Class determined from mapping result	Seagrass	68	48	10	126
(predicted by model)	Sandy bottom	68	169	10	247
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Seaweed	2	7	7	16
	Total	138	224	27	389

Imagine two different maps in your head; real world and predicted. Diagonals represent pixels classified correctly according to training data and off-diagonals indicates misclassified pixels.

- Overall accuracy: overall ratio of correctly classified pixel in training data. In this example, overall accuracy is 62.72%; (68 + 169 +7) / 389 x 100.
- Tau coefficient: reliability index for overall accuracy

Accuracy assessment

	Class determ	Class determined from trainining data (acutual data)				
	Class	Seagrass		Sandy bottom	Seaweed	Total
Class determined from mapping result	Seagrass		68	48	10	126
(predicted by model)	Sandy bottom		68	169	10	247
(10000000000000000000000000000000000000	Seaweed		2	7	7	16
	Total		138	224	27	389

 Producer's Accuracy: How well can the situation on the seafloor be mapped?

Seagrass 68 / 138 x 100 = 49.28%, Sandy bottom 169/ 224 x 100 = 21.43%, Seaweed 7/27 x 100 = 37.4%

 User's accuracy: How well the predicted class matches on the seafloor.

Seagrass 68 / 126 x 100 = 53.97%, Sandy bottom 169/ 247 x 100 = 27.53%, Seaweed 7/16 x 100 = 12.5%

Hands on practice Day 2

 1. Read sample asset folder (sample_nanao_1506) and run classification in Nanano Bay with different parameters set up

 2. Read your uploaded asset folder and run classification with different parameters setting